Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Teacher well-being in English language teaching: An ecological approach ; : 29-42, 2023.
Article in English | APA PsycInfo | ID: covidwho-2299660

ABSTRACT

The global events of the 21st century, especially during its second decade, contributed to rising rates of mental and emotional health issues around the world, including depression, anxiety, and social isolation. These concerns, which were compounded by the COVID-19 pandemic, are reminding policymakers, scholars, and stakeholders in the field of education about the importance of well-being in schools and in learning. English language teachers' well-being directly affects their effectiveness, teaching practices, classroom atmosphere, teacher-student relationships, and students' well-being and performance, to name a few. In the same way that teacher preparation and knowledge affect teachers' performance, so does teacher well-being. With the purpose of situating teacher well-being in English language teaching (ELT), this chapter provides a brief overview of existing published works highlighting the effects of well-being on teachers' personal and professional lives. It introduces the topic of well-being and teacher well-being in ELT. The chapter divides the manuscript into three main sections, each addressing a salient topic affecting language teacher well-being-namely, emotions in ELT, work-life balance in ELT, and services and supports in ELT. It introduces the topic with a vignette, followed by a brief overview of the literature. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

2.
Current Bioinformatics ; 17(5):426-439, 2022.
Article in English | ProQuest Central | ID: covidwho-2054739

ABSTRACT

Background: SARS-CoV-2 has paralyzed mankind due to its high transmissibility and its associated mortality, causing millions of infections and deaths worldwide. The search for gene expression biomarkers from the host transcriptional response to infection may help understand the underlying mechanisms by which the virus causes COVID-19. This research proposes a smart methodology integrating different RNA-Seq datasets from SARS-CoV-2, other respiratory diseases, and healthy patients. Methods: The proposed pipeline exploits the functionality of the ‘KnowSeq’ R/Bioc package, integrating different data sources and attaining a significantly larger gene expression dataset, thus endowing the results with higher statistical significance and robustness in comparison with previous studies in the literature. A detailed preprocessing step was carried out to homogenize the samples and build a clinical decision system for SARS-CoV-2. It uses machine learning techniques such as feature selection algorithm and supervised classification system. This clinical decision system uses the most differentially expressed genes among different diseases (including SARS-Cov-2) to develop a four-class classifier. Results: The multiclass classifier designed can discern SARS-CoV-2 samples, reaching an accuracy equal to 91.5%, a mean F1-Score equal to 88.5%, and a SARS-CoV-2 AUC equal to 94% by using only 15 genes as predictors. A biological interpretation of the gene signature extracted reveals relations with processes involved in viral responses. Conclusion: This work proposes a COVID-19 gene signature composed of 15 genes, selected after applying the feature selection ‘minimum Redundancy Maximum Relevance’ algorithm. The integration among several RNA-Seq datasets was a success, allowing for a considerable large number of samples and therefore providing greater statistical significance to the results than in previous studies. Biological interpretation of the selected genes was also provided.

3.
J Pers Med ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1862834

ABSTRACT

The coronavirus disease 2019 (COVID-19) has caused millions of deaths and one of the greatest health crises of all time. In this disease, one of the most important aspects is the early detection of the infection to avoid the spread. In addition to this, it is essential to know how the disease progresses in patients, to improve patient care. This contribution presents a novel method based on a hierarchical intelligent system, that analyzes the application of deep learning models to detect and classify patients with COVID-19 using both X-ray and chest computed tomography (CT). The methodology was divided into three phases, the first being the detection of whether or not a patient suffers from COVID-19, the second step being the evaluation of the percentage of infection of this disease and the final phase is to classify the patients according to their severity. Stratification of patients suffering from COVID-19 according to their severity using automatic systems based on machine learning on medical images (especially X-ray and CT of the lungs) provides a powerful tool to help medical experts in decision making. In this article, a new contribution is made to a stratification system with three severity levels (mild, moderate and severe) using a novel histogram database (which defines how the infection is in the different CT slices for a patient suffering from COVID-19). The first two phases use CNN Densenet-161 pre-trained models, and the last uses SVM with LDA supervised learning algorithms as classification models. The initial stage detects the presence of COVID-19 through X-ray multi-class (COVID-19 vs. No-Findings vs. Pneumonia) and the results obtained for accuracy, precision, recall, and F1-score values are 88%, 91%, 87%, and 89%, respectively. The following stage manifested the percentage of COVID-19 infection in the slices of the CT-scans for a patient and the results in the metrics evaluation are 0.95 in Pearson Correlation coefficient, 5.14 in MAE and 8.47 in RMSE. The last stage finally classifies a patient in three degrees of severity as a function of global infection of the lungs and the results achieved are 95% accurate.

4.
Journal of Personalized Medicine ; 12(4):535, 2022.
Article in English | MDPI | ID: covidwho-1762545

ABSTRACT

The coronavirus disease 2019 (COVID-19) has caused millions of deaths and one of the greatest health crises of all time. In this disease, one of the most important aspects is the early detection of the infection to avoid the spread. In addition to this, it is essential to know how the disease progresses in patients, to improve patient care. This contribution presents a novel method based on a hierarchical intelligent system, that analyzes the application of deep learning models to detect and classify patients with COVID-19 using both X-ray and chest computed tomography (CT). The methodology was divided into three phases, the first being the detection of whether or not a patient suffers from COVID-19, the second step being the evaluation of the percentage of infection of this disease and the final phase is to classify the patients according to their severity. Stratification of patients suffering from COVID-19 according to their severity using automatic systems based on machine learning on medical images (especially X-ray and CT of the lungs) provides a powerful tool to help medical experts in decision making. In this article, a new contribution is made to a stratification system with three severity levels (mild, moderate and severe) using a novel histogram database (which defines how the infection is in the different CT slices for a patient suffering from COVID-19). The first two phases use CNN Densenet-161 pre-trained models, and the last uses SVM with LDA supervised learning algorithms as classification models. The initial stage detects the presence of COVID-19 through X-ray multi-class (COVID-19 vs. No-Findings vs. Pneumonia) and the results obtained for accuracy, precision, recall, and F1-score values are 88%, 91%, 87%, and 89%, respectively. The following stage manifested the percentage of COVID-19 infection in the slices of the CT-scans for a patient and the results in the metrics evaluation are 0.95 in Pearson Correlation coefficient, 5.14 in MAE and 8.47 in RMSE. The last stage finally classifies a patient in three degrees of severity as a function of global infection of the lungs and the results achieved are 95% accurate.

SELECTION OF CITATIONS
SEARCH DETAIL